
$6 \quad 460,000 \mathrm{~kW} \times 6,000$ hours
$8=$
$460 \mathrm{MW} \times 6,000$ hours
$=\quad 276 \times 10^{\wedge} 4 \mathrm{MWh}$
$9 \quad\left(1 \mathrm{MWh}=1,000 \mathrm{kWh}=10^{\wedge} 3 \mathrm{kWh}\right)$
$10=2,760,000 \mathrm{MWh}$
11
12
$13=\quad 993.6 \times 10^{\wedge} 7 \mathrm{MJ}$
$14=\quad 9,936 \times 10^{\wedge} 6 \mathrm{MJ}$
15
16
$17=\left(993,600 \times 10^{\wedge} 3 \mathrm{GJ}\right) \div 41.686 \mathrm{GJ} / \mathrm{TOE}$
$18=2,383.53 \times 10^{\wedge} 3 \mathrm{TOE}$
19
20 Hydro Power Station
21
$22=\quad 25 \mathrm{MW} \times 4,800$ hours
$23=120,000 \mathrm{MWh}$
24
25
$26=\left(120 \times 10^{\wedge} 6 \mathrm{kWh}\right) \times 3.6 \mathrm{MJ} / \mathrm{kWh}$
$27=432 \times 10^{\wedge} 6 \mathrm{MJ}$
28
29
30
$31=\left(432 \times 10^{\wedge} 3 \mathrm{GJ}\right) \div 41.686 \mathrm{GJ} / \mathrm{TOE}$
$32=\quad 10.36 \times 10^{\wedge} 3 \mathrm{TOE}$

JICA Training program lecture series

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	$\mathrm{KgCO} 2 / \mathrm{TJ}$	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4	3.173	0.972t/kl	$3.084 \mathrm{tCO}_{2} / \mathrm{kl}$
Diesel Oil	0.0433	74.1	3.209	0.846t/kl	$2.714 \mathrm{tCO}_{2} / \mathrm{kl}$
Residual Oil	0.0410	77.4	3.173	0.972t/kl	$3.084 \mathrm{tCO}_{2} / \mathrm{kl}$
Coal	0.0293	101.0	2.816	$1.300 \mathrm{t} / \mathrm{m}^{3}$	$3.661 \mathrm{tCO}_{2} / \mathrm{t}$
LPG	0.0502	63.1	3.168		$3.168 \mathrm{tCO}_{2} / \mathrm{kg}$
Natural Gas	0.0411	64.2	2.639		$2.108 \mathrm{kgCO}_{2} / \mathrm{Nm}^{3}$
Grid Electricity					$0.686 \mathrm{tCO}_{2} / \mathrm{MWh}$

p.5: Question A

(1) The emission factor of furnace oil is derived from the table in previous page.

Furnace Oil's heat value is given as $0.0410 \mathrm{TJ} / \mathrm{MT}$ and its density is given as $0.972 \mathrm{MT} / \mathrm{kilo-liter}$.
Normally furnace oil traded with a unit of kilo-liters.
Hence
0.0410TJ/MT x $0.972 \mathrm{MT} /$ kilo-liter
$=0.0410 \times 10^{\wedge} 6 \mathrm{MJ} / \mathrm{MT} \times 0.972 \mathrm{MT} / \mathrm{kl}$
$=\quad 39,852 \mathrm{MJ} / \mathrm{kl}$

Therefore, heat derived from 200 liters furnace oil is
200 liters x 39,852 MJ/kl
$=0.2 \mathrm{kl} \times 39,852 \mathrm{MJ} / \mathrm{kl}$
$=\quad 7.97 \times 10^{\wedge} 3 \mathrm{MJ}$
$91=2.8 \mathrm{~m} \times 2.1 \mathrm{mx} 4.85 \mathrm{~m}$
$92=28.518 \mathrm{~m}^{\wedge} 3$

p.26: Fuel Change

furnace Oil Consumption in volume	1,752	$\mathrm{kl} /$ year
Emission factor of furnace oil	3.086	$\mathrm{tCO}_{2} / \mathrm{kl}$
CO $_{2 \text { Emissions_before }}$	5,406	$\mathrm{tCO}_{2} /$ year
Conversion rate of weight/volume	0.972	t / kl
Heavy Oil Consumption in weight	1,703	$\mathrm{t} /$ year
Unit HV of furnace oil	41.0	GJ / t
Heat derived from furnace Oil	69,823	$\mathrm{GJ} /$ year

HV of natural gas	46.1	$\mathrm{MJ} / \mathrm{m}^{3}$
Amount of Natural gas needed	$1,515 \times 10^{3}$	$\mathrm{~m}^{3} /$ year
Emission Factor of natural gas	2.108	$\mathrm{kgCO}_{2} / \mathrm{m}^{3}$
CO_{2} Emissions_after	3,194	$\mathrm{tCO}_{2} /$ year

Consumption of furnace oil before the project is $1,752 \mathrm{kl} /$ year.

```
= 86,124.36kcal
1kcal =4,166J
    86,124.36 kcal x 4,166 J
= 358,794,084J
= 358.8MJ
```

 \(28.518 \mathrm{~m} \wedge 3 \times 1.51 \mathrm{~kg} / \mathrm{m} \wedge 3 \times 2,000 \mathrm{kcal} / \mathrm{kg}\)
 Furnace Oil's HV is derived as $0.039852 \mathrm{TJ} / \mathrm{kl}$, which is $39.85 \mathrm{GJ} / \mathrm{kl}$
Therefore,
$358.8 \mathrm{MJ} \div 39.85 \mathrm{GJ} / \mathrm{kl}$
$358.8 \mathrm{MJ} \div 39.85 \mathrm{MJ} / 1$
$=\quad 9.0$ liters

CO 2 emission factor of furnace oil is $3.086 \mathrm{tCO} 2 / \mathrm{kl}$
Therefore, CO 2 emission from furnace oil is derived as
1,752kl/year x $3.086 \mathrm{tCO} 2 /$ year
$=\quad 5,406.67 \mathrm{tCO} 2$

As the gravity of furnace oil is $0.972 \mathrm{t} / \mathrm{kl}$.
Thus the amount of furnace oil consumed is
1,752kl/year x 0.972t/kl
$=1,703 \mathrm{t} /$ year

Heat value of furnace oil is $41.0 \mathrm{GJ} / \mathrm{t}$ from the table $(0.0410 \mathrm{TJ} / \mathrm{t}=41.0 \mathrm{GJ} / \mathrm{t})$
The heat derived from furnace oil combustion is
1,703 t/year x 41.0GJ/t
$=69,823 \mathrm{GJ} /$ year

p. 27 LED lump application

Unit Elec. Cons of Hg light	400	W/unit
Number of lights	137	Units
Daily Working hours	12	Hours/day
Annual Working days	264	Days/year
Electricity Consumption	$173,606.4$	kWh/year

Unit Elec. Cons of LED	118	W/unit
Number of lights	83	Units
Annual Working hours	3168	Hours/year
Electricity Consumption	$31,027.39$	$\mathrm{kWh} /$ year
Electricity Saving	$142,579.0$	$\mathrm{kWh} /$ year
CO $_{\text {EF }}$	0.686	tCO $_{2} / \mathrm{MWh}$
ER_LED	97.81	tCO_{2}

Electricity consumption of halogen lamp is
400W/unit x 137 units x 12 hours/day x 264days/year
$=\quad 54.8 \mathrm{~kW} \times 3,168$ hours/year
$=\quad 173,606.4 \mathrm{kWh} /$ year
By converting to LED lamp
118W/unit x 83 units x 12 hours/day x 264days/year
$=\quad 9.794 \mathrm{~kW}$ x 3,168 hours $/$ year
$=31,027.39 \mathrm{kWh} /$ year
The natural gas's heat value is given as $0.0461 \mathrm{GJ} / \mathrm{m}^{\wedge} 3=46.1 \mathrm{MJ} / \mathrm{m}^{\wedge} 3$
$69,823 \mathrm{GJ} /$ year $\div 46.1 \mathrm{MJ} / \mathrm{m}^{\wedge} 3$
$=1,515 \times 10^{\wedge} 3 \mathrm{~m}^{\wedge} 3$

CO 2 emission factor of natural gas given as $2.108 \mathrm{kgCO} 2 / \mathrm{m}^{\wedge} 3$ $1,515 \times 10^{\wedge} 3 \mathrm{~m}^{\wedge} 3 \times 2.108 \mathrm{kgCO} 2 / \mathrm{m}^{\wedge} 3$
$=3,194 \mathrm{tCO} 2 /$ year

The emission coefficient of electricity is derived as $0.686 \mathrm{tCO} 2 / \mathrm{MWh}$

```
            (173,606.4kWh/year - 31,027.39kWh/year) x 0.686tCO2/MWh
    = 142,579\textrm{kWh}/\mathrm{ year x 0.686tCO2/MWh}
    = 142.58MWh/year x 0.686tCO2/MWh
    = 97.81tCO2/year
```


p. 28 Grand-Sum

Deduct CO2 emissions of natural gas from furnace oil combustion as follows.
5,406.67tCO2/year - 3,193.62tCo2/year
$=\quad 2,213.05 \mathrm{tCO} 2 /$ year

As a grand-sum of project, it reduces
2,213.05tCO2/year $+97.81 \mathrm{tCO} 2 /$ year
$=\quad 2,310.86 \mathrm{tCO} 2 /$ year

