Answers for Fuel Switch & Energy Efficiency CDM Project Case Study,

2

JICA Training program lecture series

3

5						
4	Page 3. Table of Energy Scale					
5	Fukushima 1					
6		460,000kW x 6,000 hours	34			
7		460MW x 6,000 hours	35	Gas Eng	jine	
8	=	276 x 10^4 MWh	36		312kW x 4,000hours	
9	(1MWh =	$=1,000$ kWh $= 10^{3}$ kWh)	37	=	0.312 MW x 4,000hours	
10	=	2,760,000 MWh	38	=	1,248 MWh	
11			39			
12		276 x 10^7 kWh x 3.6 MJ/kWh	40		1,248MWh x 3.6 MJ/kWh	
13	=	993.6 x 10^7 MJ	41		(1,248 x 10^3 kWh) x 3.6 MJ/kWh	
14	=	9,936 x 10^6 MJ	42	=	4,492 x 10^3 MJ	
15			43			
16		9,936 x 10^6 MJ ÷ 41.686GJ/TOE	44		4,492 x 10^3 MJ ÷ 41.686 GJ/TOE	
17	=	(993,600 x 10^3 GJ) ÷ 41.686GJ/TOE	45	=	(4.492 x 10^3 GJ) ÷ 41.686 GJ/TOE	
18	=	2,383.53 x 10^3 TOE	46	=	107.9 TOE	
19			47	=	0.108 x 10^3 TOE	
20	Hydro Po	ower Station	48			
21		25,000kW x 4,800hours	49	Househo	old	
22	=	25MW x 4,800 hours	50		0.48 kW x 8,760 hours	
23	=	120,000MWh	51	=	4,204.8 kWh	
24			52	=	4.20 MWh	
25		(120,000MWh) x 3.6 MJ/kWh	53			
26	=	(120 x 10^6 kWh) x 3.6MJ/kWh	54		4.200kWh x 3.6 MJ/kWh	
27	=	432 x 10^6 MJ	55	=	15,120 MJ	
28			56	=	0.015 x 10^6 GJ	
29			57	=	15 x 10^3 GJ	
30		432 x 10^6MJ ÷ 41.686GJ/TOE	58			
31	=	(432 x 10^3 GJ) ÷ 41.686GJ/TOE	59		15 x 10^3GJ ÷ 41.686 GJ/TOE	

60 =

0.0032 x 10^3 TOE

 $32 = 10.36 \times 10^{4} \times 10^{10}$

61

64

62 p.4 Emission Coefficient Table

63 Basic equation is as follows.

```
Heat Value x COEF = EF, EF x 1/Gravity = trade unit's EF
```

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	KgCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4	3.173	0.972t/kl	3.084tCO ₂ /kl
Diesel Oil	0.0433	74.1	3.209	0.846t/k1	2.714tCO ₂ /kl
Residual Oil	0.0410	77.4	3.173	0.972t/kl	3.084tCO ₂ /kl
Coal	0.0293	101.0	2.816	1.300t/m ³	3.661tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		$2.108 kg CO_2/Nm^3$
Grid Electricity					0.686tCO ₂ /MWh

65

p.5: Question A 66 (1)67 The emission factor of furnace oil is derived from the table in previous page. 68Furnace Oil's heat value is given as 0.0410TJ/MT and its density is given as 0.972MT/kilo-liter. 69 Normally furnace oil traded with a unit of kilo-liters. Hence 70710.0410TJ/MT x 0.972MT/kilo-liter 720.0410 x 10^6MJ/MT x 0.972 MT/kl = 39,852 MJ/kl 73= 74Therefore, heat derived from 200 liters furnace oil is 7576200 liters x 39,852 MJ/kl 770.2kl x 39,852 MJ/kl = 787.97 x 10^3 MJ = 7980 200 liters x 3.086tCO2/kl 0.2kl x 3.086tCO2/kl 81 82 0.6172tCO2 = 83 (2)84 7.97 x 10^3 MJ ÷ 0.0293TJ/MT 7.97GJ ÷ 29.3GJ/MT 85= 86 0.272MT = 87 = 272kg 88 p.6: Question B 89 90 2,800mm x 2,100mm x 4,850mm 912.8m x 2.1m x 4.85m = 92= 28.518m^3

93		
94		28.518m^3 x 1.51kg/m^3 x 2,000kcal/kg
95	=	86,124.36kcal
96	1kcal =4	,166J
97		86,124.36 kcal x 4,166 J
98	=	358,794,084J
99	=	358.8MJ
100		
101	Furnace	Oil's HV is derived as 0.039852 TJ/kl, which is 39.85GJ/kl
102	Therefor	re,
103		358.8MJ ÷ 39.85GJ/kl
104		358.8MJ ÷ 39.85 MJ/l
105	=	9.0 liters
106		
1 0 -		

107 p.26: Fuel Change

furnace Oil Consumption in volume	1,752	kl/year
Emission factor of furnace oil	3.086	tCO ₂ /kl
CO _{2 Emissions_before}	5,406	tCO ₂ /year
Conversion rate of weight/volume	0.972	t/kl
Heavy Oil Consumption in weight	1,703	t/year
Unit HV of furnace oil	41.0	GJ/t
Heat derived from furnace Oil	69,823	GJ/year

HV of natural gas	46.1	MJ/m ³
Amount of Natural gas needed	1,515 x10 ³	m ³ /year
Emission Factor of natural gas	2.108	kgCO ₂ /m ³
CO _{2 Emissions_after}	3,194	tCO ₂ /year

108	Consumption of furnace oil before the project is 1,752kl/year.
109	
110	CO2 emission factor of furnace oil is 3.086tCO2/kl
111	Therefore, CO2 emission from furnace oil is derived as
112	1,752kl/year x 3.086tCO2/year
113	= 5,406.67 tCO2
114	
115	As the gravity of furnace oil is 0.972t/kl.
116	Thus the amount of furnace oil consumed is
117	1,752kl/year x 0.972t/kl
118	= 1,703t/year
119	
120	Heat value of furnace oil is 41.0 GJ/t from the table (0.0410 TJ/t = 41.0 GJ/t)
121	The heat derived from furnace oil combustion is
122	1,703 t/year x 41.0GJ/t
123	= 69,823GJ/year
124	

125	The natural gas's heat value is given as 0.0461 GJ/m ³ = 46.11	MJ/m^3
126	69,823GJ/year ÷ 46.1MJ/m^3	
127	$=$ 1,515 x 10^3 m^3	
128		
129	CO2 emission factor of natural gas given as 2.108kgCO2/m^3	}
130	1,515 x 10^3 m^3 x 2.108 kgCO2/m^3	
131	= 3,194tCO2/year	
132		
100	a 07 LED human analisation	

133 p.27 LED lump application

Unit Elec. Cons of Hg light	400	W/unit
Number of lights	137	Units
Daily Working hours	12	Hours/day
Annual Working days	264	Days/year
Electricity Consumption	173,606.4	kWh/year

Unit Elec. Cons of LED	118	W/unit
Number of lights	83	Units
Annual Working hours	3168	Hours/year
Electricity Consumption	31,027.39	kWh/year
Electricity Saving	142,579.0	kWh/year
CO _{EF}	0.686	tCO ₂ /MWh
ER_LED	97.81	tCO ₂

134	Electric	city consumption of halogen lamp is
135		400W/unit x 137 units x 12 hours/day x 264days/year
136	=	54.8kW x 3,168 hours/year
137	=	173,606.4kWh/year
138	By con	verting to LED lamp
139		118W/unit x 83 units x 12 hours/day x 264days/year
140	=	9.794kW x 3,168 hours/year
141	=	31,027.39kWh/year
142		
143	The em	ission coefficient of electricity is derived as 0.686tCO2/MWh
144		(173,606.4kWh/year - 31,027.39kWh/year) x 0.686tCO2/MWh
145	=	142,579kWh/year x 0.686tCO2/MWh
146	=	142.58MWh/year x 0.686tCO2/MWh
147	=	97.81tCO2/year
148		
149	p.28 (Grand-Sum
150	Deduct	CO2 emissions of natural gas from furnace oil combustion as follows.
151		5,406.67tCO2/year - 3,193.62tCo2/year
152	=	2,213.05tCO2/year
153		
154	As a gr	and-sum of project, it reduces
155		2,213.05tCO2/year + 97.81tCO2/year
156	=	2,310.86tCO2/year